

 Navigation

 	
 index

 	
 next |

 	uredis 0.0.9 documentation

MicroQueue - A Python module that allows you to use Redis as a message queue.

Table of Contents

	Installation Instructions
	Installing on CPython 3

	Installing on micropython

	Example, of installing on ESP8266

	Usage
	Creating a queue worker on an esp8266

	Writing to the queue

	Resource usage

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2016, Dwight Hubbard.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	uredis 0.0.9 documentation

Installation Instructions

Installing on CPython 3

Although micropython-microqueue is designed to function with
micropython, it is supported on most python 3 interpreters.Use pip to install on Python3 or PyPy3.

$ pip install micropython-microqueue

Installing on micropython

The installation process differs depending on the version of
micropython being used. However the upip module is used to do the
installation from the Python package repositories.

Installing on micropython unix

Use the micropython upip module to install on micropython.

$ micropython -m upip install micropython-microqueue

Installing on micropython on the esp8266

To install on micropython embedded platforms:

Step 1. Change into the esp8266 build directory

$ cd esp8266

Step 2. Use upip to install the module into the scripts directory.

Set the MICROPYPATH environment variable to point to the scripts
directory.

$ MICROPYPATH=scripts;micropython -m upip install micropython-microqueue

Step 3. Deploy the module to the esp8266.

$ make deploy

Example, of installing on ESP8266

Install using the upip module into the esp8266 scripts directory

$ MICROPYPATH=scripts;micropython -m upip install micropython-microqueue
Installing to: scripts/
Warning: pypi.python.org SSL certificate is not validated
Installing micropython-microqueue 0.0.6 from https://pypi.python.org/packages/07/55/c8cb5881a86906da5c3a5bae328cc537e127f760a57c50ba1062a7bebd1c/micropython-microqueue-0.0.6.tar.gz
Created scripts/microqueue/
Installing micropython-redis.list 0.0.57 from https://pypi.python.org/packages/4d/71/b12f84002e4d35ce9c66b14d82ef35b900c7a32389eea32661e9e0abad37/micropython-redis.list-0.0.57.tar.gz
Created scripts/uredis_modular/
Installing micropython-redis.client 0.0.57 from https://pypi.python.org/packages/5a/b6/641f3f47f8ef6997c37e0fa4499f25ef9d9088a409f71bba1c8031f2b3e2/micropython-redis.client-0.0.57.tar.gz
Installing micropython-redis-modular 0.0.57 from https://pypi.python.org/packages/0a/68/1424002583bc72e29573f5ccf30a45d6c265ec0435d33999f728f277caa5/micropython-redis-modular-0.0.57.tar.gz

Deploy to the esp8266

$ make PORT=/dev/ttyUSB0 deploy
Use make V=1 or set BUILD_VERBOSE in your environment to increase build verbosity.
Generating build/frozen.c
Generating build/genhdr/mpversion.h
GEN build/genhdr/qstr.i.last
GEN build/genhdr/qstr.split
GEN build/genhdr/qstrdefs.collected.h
QSTR not updated
CC ../py/modsys.c
CC moduos.c
CC build/frozen.c
CC ../lib/utils/pyexec.c
LINK build/firmware.elf
 text data bss dec hex filename
 527580 1044 56216 584840 8ec88 build/firmware.elf
Create build/firmware-combined.bin
esptool.py v1.2-dev
('flash ', 34992)
('padding ', 1872)
('irom0text', 493672)
('total ', 530536)
Writing build/firmware-combined.bin to the board
esptool.py v1.2-dev
Connecting...
Running Cesanta flasher stub...
Flash params set to 0x0020
Writing 532480 @ 0x0... 532480 (100 %)
Wrote 532480 bytes at 0x0 in 46.2 seconds (92.2 kbit/s)...
Leaving...
Verifying just-written flash...
Verifying 0x81868 (530536) bytes @ 0x00000000 in flash against build/firmware-combined.bin...
-- verify OK (digest matched)
#@esptool.py --port /dev/ttyUSB0 --baud 115200 write_flash --flash_size=8m 0 build/firmware.elf-0x00000.bin 0x9000 build/firmware.elf-0x0[1-f]000.bin
$

 Copyright 2016, Dwight Hubbard.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	uredis 0.0.9 documentation

Usage

The microqueue module creates queues that are stored in redis lists. In
order to establish a queue you will need a running redis server.

If the redis server host and port are not specified and the bootconfig
module was used to configure the device with a redis_server and
redis_port, that redis server willl be used by default.

Creating a queue worker on an esp8266

The queue.worker decorator runs the decorated function with the value
from the queue passed as the argument to the function.

MicroPython v1.8.1-87-g7ddd85f-dirty on 2016-06-27; ESP module with ESP8266
Type "help()" for more information.
>>> from microqueue import MicroQueue
>>> queue = MicroQueue('queuename', host='192.168.1.183', port=6666)
>>>
>>> @queue.worker
... def print_message(message):
... print(message)
...
>>> print_message()
Micropython Rocks!!!

Writing to the queue

The resulting queue is compatible with the python
redis-hotqueue/hotqueue modules available. As long
as the json serializer is used (pickle is not supported on micropython)

Python 2.7.11+ (default, Apr 17 2016, 14:00:29)
[GCC 5.3.1 20160413] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import json
>>> from hotqueue import HotQueue
>>> queue = HotQueue('queuename', host='192.168.1.183', port=6666, serializer=json)
>>> queue.put('Micropython Rocks!!!')
>>>

 Copyright 2016, Dwight Hubbard.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	uredis 0.0.9 documentation

Resource usage

The microqueue module tries to keep memory utilization to a minimum.

The module currently uses 2240 bytes to import and 4064 bytes to create
a microqueue object on the ESP8266 port.

Which means the following code uses 6304 bytes:

from microqueue import MicroQueue
q=MicroQueue('repl')

The redis protocol is binary safe which means the returned data doesn’t
have to be copied or processed before being returned. As a result the
queue worker just needs sufficient memory to create the object being
returned from the redis queue. Which means the queue worker does not
require a significant amount of resouces while in use.

Here is an example function to show the memory free and a queue worker
that displays the message returned and the amount of free memory:

>>> def free():
... gc.collect()
... return gc.mem_free()
...
>>> free()
14224
>>> @q.worker
... def print_free(message):
... print("Received", message)
... print(free())
...
>>> print_free()
Received hello
13664
Received hello
13632
Received hello
13632
Received hello
13632
Received hello
13632

 Copyright 2016, Dwight Hubbard.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	uredis 0.0.9 documentation

Index

 Copyright 2016, Dwight Hubbard.
 Created using Sphinx 1.3.5.

 _static/file.png

search.html

 Navigation

 		
 index

 		uredis 0.0.9 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Dwight Hubbard.
 Created using Sphinx 1.3.5.

_static/minus.png

_static/comment.png

_static/down-pressed.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

_static/up.png

_static/up-pressed.png

_static/comment-close.png

_static/comment-bright.png

